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Total Energies from Numerical Self-Consistent Field Calculations* 
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Total energies computed by using a Hartree, a Hartree-Fock-Slater, and a relativistic Dirac-Slater nu­
merical self-consistent field calculation for the normal ground states of all the elements are reported. These 
results are discussed and compared with those from two Hartree-Fock analytical wave functions and from a 
nonrelativistic Thomas-Fermi approximation. The methods of calculating total energies are also presented. 

INTRODUCTION 

RECENTLY, several different self-consistent field 
calculations have been completed for a wide range 

of atoms, and a few total energies have been reported. 
The purpose of this paper is to report the total energies 
obtained by using three numerical calculations and to 
compare these results with those of three independent 
calculations. Also, an attempt is made to explain some 
of the differences. 

The three numerical calculations are those of Boyd, 
Larson, and Waber,1 Herman and Skillman,2 and Liber-
man, Waber, and Cromer.3 These three methods differ 
in that the Boyd-Larson-Waber (BLW) one is a non­
relativistic Hartree (NR-H) calculation with an ex­
change correction used only in the total energy, the 
Herman-Skillman (HS) one is a nonrelativistic Hartree-
Fock-Slater (NR-HFS) calculation, while the Liberman-
Waber-Cromer (LWC) one is a relativistic Dirac-Slater 
(R-DS) calculation. These are compared with two 
analytical nonrelativistic Hartree-Fock (NR-HF) re­
sults, namely those of Clementi4 and of Watson.5 A 
comparison is also made with the results of a nonrela­
tivistic Thomas-Fermi (NR-TF) approximation. 

THEORY 

In the following discussion, the three numerical calcu­
lations will be described together with the methods 
used in calculating total energies. These descriptions 
will be followed by a discussion of the Thomas-Fermi 
approximation. 

In the hitherto unreported BLW calculation, no 
exchange term appears in the (NR-H) potential func­
tion. In this calculation the total energy is approximated 
by use of the Slater / , Fk, and Gh integrals, which in­
clude exchange, as described in Vol. I of Slater's book.6 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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Refining Company, Houston, Texas. 

t Present address: Department of Physics, University of 
Oklahoma, Norman, Oklahoma. 
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The LWC wave functions are solutions of the coupled 
Dirac relativistic equations, in which the Slater p1/3 

approximation7'8 for the exchange term is used in con­
junction with the Latter9 self-interaction correction, in 
constructing the central field potential. The total 
energies were calculated from the expressions described 
below. 

First, consider the single eigenvalue e* of the Hartree-
Fock equation, which is given by 

€•= (T{+ 7<>+E/ J V f E y Wij, (1) 

where 7\- is the kinetic energy of the ith electron, Vi is 
the potential energy of the ith electron with respect to 
the nucleus, ]£* V%j is the average electrostatic potential 
energy of the ith. electron with respect to the other 
electrons, and X)y W%j is the average exchange potential 
energy of the ith electron with respect to the other 
electrons. The total energy ET is then equal to 

£ r=£«-l£*V-iEW^, (2) 

since pair interaction is counted twice. Consider the 
direct potential of the ith electron to be given by 

o 3 J \r—r\ 

P(r>) 

(r)#j(r')d3r' 

" / • 

•dh'Hr)^V(r)Ur), (3) 

where, \f/i(r) is a two-component spin orbital represent­
ing the wave function for the ith. electron, and 

Then, 
i 

ij i J 

= fp(r)V(r)dsr. (4) 

7 J. C. Slater, Phys. Rev. 81, 385 (1951). 
8 J. C. Slater, Quantum Theory of A tomic Structure (McGraw-

Hill Book Company, Inc., New York, 1960), Vol. II , Chap. 17. 
9 R. Latter, Phys. Rev. 99, 510 (1955). 
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Now consider the exchange potential of the ith electron 
Xly Wij to be given by 

E^=-r«o cy Aw)" 
J \r—r\ 

Ur)Hr')d*rf. (5) 

In Slater's method, summation over j and integration 
over rf can be replaced by the expression 

£ Wif^W(r)Hr), 

where W(r) is the free-electron exchange potential, 
namely 

W(r)^ ~ ( 8 1 / 8 7 T ) 1 / 3 [ P W ] 1 / 3 . (6) 

Thus, 

i/ i J 
(r)W(r)fi(r)d3r 

p{r)W(r)dh, 

and the total energy is then 

£ r ~ Z 6 - | [p(r)lV(r)+W(r)]Pr, 

(7) 

(8) 

which is the expression used in this method. 
The HS wave functions are solutions of the so-called 

Hartree-Fock-Slater equations since the Slater p1/3 ap­
proximation of exchange and the Latter self-interaction 
correction are employed in the (NR-HFS) potential. 
The HS eigenfunctions were recomputed by using the 
program Herman and Skillman published.2 Total 
energies were also calculated using the HS eigenfunction 
by the same method as that used in the LWC eigen­
functions. The main difference between these two calcu­
lations is that the HS solutions are nonrelativistic. 

Using the Thomas-Fermi approximation, Scott10 

showed that the total energy ETF of a free atom of 
atomic number Z is related to the potential V produced 
at the nucleus by the surrounding electron cloud by the 
expression 

• / 

ETr= / V(Z)dZ (9) 

and that V is related to the Thomas-Fermi11 potential 
<£by 

V(Z) = Zd4>/dr\r-*. 

The gradient d<j>/dr\ ra=0 has been shown by Scott to be 
— 1.7936Z4/3 which gives as an expression of total energy 

ETF=-0.76$7Z7n 

10 J. M. C. Scott, Phil. Mag. 43, 859 (1952). 
11 A general review of Thomas-Fermi theory and applications 

is given by N. H. Marsh, Advances in Physics (Taylor and Francis, 
Ltd., London, 1957), Vol. 6, p. 1. 

(in atomic units). Scott and later March and Plaskett12 

made corrections to account for boundary effects and 
exchange which lead to the expression for total energy 

ETP= -0.7687Z7/3+fZ2-0.266Z5/3 (10) 

for the nonrelativistic case. This expression was used 
in calculating the (NR-TF) total energies. 

RESULTS AND DISCUSSIONS 

Table I gives the total energies ET for the normal 
ground state of the elements with atomic numbers in the 

TABLE I. Comparison of the total energies of low 
atomic number, free atoms. 

Helium 
Lithium 
Beryllium 
Boron 
Carbon 
Nitrogen 
Oxygen 
Fluorine 
Neon 
Sodium 
Magnesium 
Aluminum 
Silicon 
Phosphorus 
Sulfur 
Chlorine 
Argon 
Potassium 
Calcium 
Scandium 
Titanium 
Vanadium 
Chromium 
Manganese 
Iron 
Cobalt 
Nickel 
Copper 
Zinc 
Gallium 
Germanium 
Arsenic 
Selenium 
Bromine 
Krypton 

Nonrelativistic 
BLW 

(NR-H) 
— ET 
(Ry.) 

5.723403 
14.89197 
29.18997 
49.08519 
75.36043 

108.6992 
149.7843 
199.2962 
257.9155 
324.7861 
400.5313 
485.2652 
579.4141 
683.2948 
797.2583 
921.6204 

1056.708 
1201.752 
1357.265 
1523.321 
1700.687 
1889.630 
2090.317 
2303.446 
2528.877 
2767.050 
3018.249 
3282.825 
3560.796 
3851.847 
4156.293 
4474.261 
4805.937 
5151.519 
5511.164 

HS 
(NR-HFS) 

—ET 
(RyQ 

5.755868 
14.45243 
28.51049 
48.15778 
74.15735 

107.1735 
147.8756 
196.9160 
254.9587 
321.1638 
396.3616 
480.5428 
574.1268 
677.4286 
790.7725 
914.4536 

1048.808 
1193.142 
1348.033 
1513.684 
1690.624 
1879.218 
2079.636 
2292.255 
2517.282 
2755.001 
3005.750 
3269.843 
3547.192 
3837.523 
4141.200 
4458.455 
4789.378 
5134.158 
5492.977 

Relativistic 
LWC 

(R-DS) 
— ET 
(Ry.) 

5.599126 
14.38286 
28.46454 
48.11982 
74.13347 

107.1777 
147.9225 
197.0350 
255.1814 
321.5484 
396,9741 
481.4286 
575.3637 
679.1096 
792.9992 
917.3633 

1052.532 
1197.862 
1353.955 
1520.993 
1699.582 
1890.033 
2092.599 
2307.735 
2535.593 
2776.529 
3030.850 
3298.948 
3580.873 
3876.316 
4185.716 
4509.257 
4847.161 
5199.642 
5566.928 

range 2 to 36 for the self-consistent (NR-H), (NR-HFS), 
and (R-DS) calculations described above. Figure 1 gives 
the curves of energy versus atomic number for these 
three numerical calculations. Therein the (R-DS) curve 
is labeled LCW. In the same figure, points are also given 
for Clementi's and for Watson's analytical (NR-HF) 
solutions. 

12 N. H. Marsh and J. S. Plaskett, Proc. Roy. Soc. (London) 
A235, 419 (1956). 
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FIG. 1. Variation of the total energy as a function of atomic 
number in the range Z<36 for the BLW, HS, and LWC numerical 
self-consistent field solutions. Also plotted are every third point 
for dementi 's and for Watson's analytical (NR-HF) solutions. 

It can be seen in Fig. 1 that the results of all calcula­
tions are comparatively close, up to about aluminum. 
From that point, the three numerical calculation results 
agree fairly closely with the Watson analytical (NR-HF) 
solution. However, dementi's (NR-HF) results begin 
to deviate at that point and become significantly lower 
at krypton. Although not shown in Fig. 1, the results 
of the (NR-TF) and the (NR-HFS) of HS agree within 
2 Ry throughout this range of Z. 

It is also evident from Table I that there is a slight 
difference between the BLW Hartree values and the HS 
Hartree-Fock-Slater values. The main difference be­
tween these two calculations apparently arises from the 
methods of calculating the total energy. The method 
used for ET in the HS calculations gives total energies 
of smaller magnitude than does the method using the 
proper combination of Slater integrals. In order to make 
a more valid comparison, the Slater / integrals and total 
electron densities from the BLW wave functions were 
also used in the method for ET outlined above to esti­
mate the electrostatic and exchange corrections. That 
is, the total energy was calculated by considering 

I<=(Tt+Vi), (11) 

/ . ^ V ^ E / i + i E ^ + i E ^ i y . (12) 
i ij ij 

The typical results of four elements are given in Table II. 
It can be seen that there is an appreciable difference 

TABLE II. Comparison of total energies obtained two 
ways with BLW wave functions. 

(Slater I with 
angularly dependent 
Fk and Gk integrals) 

(Slater / integrals 
and LWC ET % 

method) difference 

Helium 
Aluminum 
Chromium 
Krypton 

5.723403 
485.2652 

2090.317 
5511.164 

5.439943 
480.56083 

2079.607 
5492.945 

4.95 
0.97 
0.51 
0.33 

between the results for elements of low atomic numbers, 
but less than 1% difference for elements with atomic 
numbers larger than that for aluminum. 

One may expand 

1 oo r < * 

\r—r k=o r>k+l 
Pk(cosy), (13) 

where r< is min(r/') and r> is max(r,r') and where y is 
the angle between r and r'. In the method outlined above 
only the dominant term appropriate for a spherical 
average (namely, with k=0) is used and the angular 
dependence of orbitals is neglected. However, in making 
the perturbation corrections for electrostatic and ex­
change interactions to the BLW (NR-H) total energy, 
we have used the proper linear combination of Fk and 
Gk integrals (i.e., with 0<&</i+/2 , where h and h are 
the angular momenta of the two orbitals). 

Table III gives the total energies for the normal 
ground state of the elements with atomic numbers 37 
to 102 for the BLW and LWC calculations. Figure 2 is 

Z (ATOMIC NUMBER) 

FIG. 2. Variation of the total energy as a function of atomic 
number in the range 35 <Z< 103 for the LWC and BLW numerical 
solutions and for the (NR-TF) approximations. Also plotted are 
three results for the Herman-Skillman (NR-HFS) solutions. 
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TABLE III. Comparison of the best nonrelativistic and relativistic total energies. 

Atomic 
No. 

~~37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

Symbol 

Rb 
Sr 
Y 
Zr 
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 
Ag 
Cd 
In 
Sn 
Sb 
Te 
I 
Xe 
Cs 
Ba 
La 
Ce 
Pr 
Nd 
Pm 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 

BLW 
(NR-H) 

-ET(Ry.) 

5884.120 
6270.831 
6671.286 
7086.023 
7515.214 
7959.148 
8417.816 
8891.750 
9380.742 
9885.273 

10 405.05 
10 940.09 
11 490.43 
12 056.19 
12 637.51 
13 234.51 
13 847.31 
14 476.02 
15 119.95 
15 779.46 
16 454.70 
17 145.71 
17 853.86 
18 578.84 
19 320.88 
20 080.10 
20 856.67 
21 650.66 
22 462.43 
23 291.93 
24 139.36 
25 004.94 
25 888.73 

LWC 
(R-DS) 

-ET(Ry.) 

5948.433 
6344.676 
6755.713 
7182.037 
7632.832 
8081.506 
8555.174 
9045.133 
9551.567 

10 074.80 
10 641.88 
11 171.96 
11 745.84 
12 336.93 
12 945.41 
13 571.29 
14 215.39 
14 877.31 
15 556.82 
16 254.40 
16 970.23 
17 704.96 
18 459.21 
19 233.16 
20 027.07 
20 841.25 
21 675.93 
22 531.26 
23 408.05 
24 306.10 
25 225.88 
26 167.70 
27 131.88 

Atomic 
No. 

"~~70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

Symbol 

Yb 
Lu 
Hf 
Ta 
W 
Re 
Os 
Ir 
Pt 
Au 
Hg 
Tl 
Pb 
Bi 
Po 
At 
Rn 
Fr 
Ra 
Ac 
Th 
Pa 
U 
Np 
Pu 
Am 
Cm 
Bk 
Cf 
Es 
Fm 
Md 

BLW 
(NR-H) 

-ET(Ry.) 

26 790.93 
27 711.99 
28 650.08 
29 606.98 
30 582.21 
31 575.74 
32 588.15 
33 619.02 
34 669.17 
35 737.85 
36 824.89 
37 930.54 
39 054.76 
40 197.88 
41 359.73 
42 540.66 
43 740.39 
44 958.67 
46 195.44 
47 451.08 
48 725.72 
50 019.80 
51 333.53 
52 667.03 
54 020.61 
55 394.05 
56 787.27 
58 200.96 
59 635.45 
61 088.34 
62 564.37 
64 059.92 

LWC 
(R-DS) 

-ET(Ry.) 

28118.75 
29 128.41 
30 160.98 
31 216.78 
32 296.11 
33 399.23 
34 526.51 
35 678.29 
36 854.92 
38 056.81 
39 284.19 
40 536.92 
41 815.68 
43 120.71 
44 452.49 
45 811.42 
47 197.93 
48 611.95 
50 054.17 
51 524.94 
53 024.97 
54 554.87 
56 115.77 
57 707.91 
59 332.09 
60 988.83 
62 678.77 
64 402.80 
66 161.62 
67 956.08 
69 786.97 
71 655.21 

tivistic effects varies with Z is found in comparison of 
the results of the Herman-Skillman (NR-HFS) with the 
Liberman-Waber-Cromer (R-DS) calculations. Table IV 
gives such a comparison of several elements with atomic 
numbers ranging from 58 to 62 and from 90 to 94. From 
this table it is evident that the difference increases uni­
formly with increasing atomic number, as is expected. 

CONCLUSIONS 

In view of the differences among approximations 
made in the self-consistent field calculations, it is felt 
that the results of the total energy calculations pre­
sented here are in good agreement. 

It was found that, if the same Slater / integrals and, 
total electron densities are used to calculate total 
energies both by the LWC method described above and 
by means of the Slater Fk and Gk integrals, there is an 
appreciable difference between the results for elements 
of low atomic number. However, this difference is less 
than 1% for elements having atomic numbers higher 
than that of aluminum. 

It was also found that the Hartree calculations (with 
perturbation estimates of the exchange contribution) 
give total energies of larger magnitude than do the 
Hartree-Fock-Slater calculations. For example, the 

a plot of ET versus atomic number for these two calcu­
lations. Also shown in the figure is a plot of the (NR-TF) 
approximations and three points of the HS calculations. 
Again, these four calculation results are comparatively 
close throughout the range of atomic numbers, except 
that the results for the LWC relativistic calculations are 
higher at large values of Z. Of course, this increase in 
difference at higher atomic numbers is to be expected, 
since the relativistic effects are more significant in the 
heavier elements. 

A better indication of how this difference due to rela-

TABLE IV. Comparison of nonrelativistic and relativistic values 
of ET based on free electron estimate of exchange. 

Cerium 
Praseodymium 
Neodymium 
Promethium 
Samarium 
Thorium 
Protactinium 
Uranium 
Neptunium 
Plutonium 

Herman-
Skillman 

(NR-HFS) 

17 114.10 
17 822.23 
18 547.22 
19 289.26 
20 048.59 
48 685.93 
49 980.51 
51 294.42 
52 628.10 
53 982.08 

Liberman-Waber-
Cromer 
(R-DS) 

17 704.96 
18 459.21 
19 233.16 
20 027.07 
20 841.25 
53 024.97 
54 554.87 
56 115.77 
57 707.91 
59 332.09 

% 
difference 

3.34 
3.45 
3.57 
3.68 
3.80 
8.18 
8.38 
8.59 
8.80 
9.02 
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Hartree total energy is larger by as much as 38.53 Ry 
for plutonium. 

Total energies calculated from the relativistic solu­
tions are of about the same magnitude as those obtained 
from the nonrelativistic solutions at low values of 
atomic number, but are significantly larger at high 
atomic numbers. This difference increases uniformly 
with increasing atomic number from 1.06% for ger­
manium to 9.02% for plutonium. 

I. INTRODUCTION 

IN atomic helium the only electronic states of prac­
tical importance are those for which at least one 

electron is in the ground state. Thus, as is well known,1 

the Pauli antisymmetry principle is satisfied for wave 
functions for which either the spatial function is sym­
metric and the spin function is antisymmetric or for 
wave functions having antisymmetric spatial functions 
and symmetric spin functions. These two possibilities 
lead to two term schemes, the former giving the singlet 
system whose lowest member is 1 *5o while the latter 
leads to the triplet system whose lowest member 
is235i. 

Inasmuch as the 2 85i triplet state lies above the 
ground state by 19.8 eV and transitions to the ground 
state 1 ^o are rather rigorously forbidden, both by the 
orthogonality of the spin functions and by the sym­
metry differences of the spatial functions, this meta-
stable state has of late been the subject of a number of 
investigations. Experimentally this state is an attractive 
metastable system to study as it is possible to obtain an 

* Present address: Carnegie Laboratory of Physics, Queen's 
College, Dundee, Scotland. Research supported by Cornell Aero­
nautical Laboratory, Inc. (CAL Project No. RA-1761-P). 

t Research supported by the U. S. Air Force Office of Scientific 
Research, Contract Number AF-AFOSR-191-63. 

1 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p. 124. 
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appreciable concentration of these metastable atoms 
under experimental conditions. From the point of view 
of the theorist it is attractive as an approximate wave 
function and triplet state energy are obtained in which 
the energy is a rigorous upper bound to the true triplet 
energy simply by requiring that the spatial part of ones 
variational wavefunction be antisymmetric. 

To mention just a few of the recent papers on 2 3,Si 
helium, Pekeris,2 Hart and Herzberg,3 Davis,4'5 and 
Traub and Foley6 have all made accurate variational 
calculations of the energy. Hughes7-9 and his co­
workers have made rather definitive experimental and 
theoretical studies of the magnetic moment in this state. 
Finally, Benton, Ferguson, Matsen, and Robertson10 

have recently made a number of measurements of the 
cross sections for de-excitation of the metastable atom 
by collisions with other atoms. 
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P H Y S I C A L R E V I E W V O L U M E 1 3 5 , N U M B E R 4A 17 A U G U S T 1 9 6 4 

Magnetic Susceptibility of 2 3Si State of Helium and Some Like Ions 

JOHN T. MCMULLAN* 

Cornell Aeronautical Laboratory, Inc., of Cornell University, Buffalo, New York 

AND 

R. P . HURSTf 

The State University of New York at Buffalo, Buffalo, New York 
(Received 5 March 1964) 

The magnetic susceptibility of the 2 35i state of helium and some like ions is computed using a thirty-five 
term wave function of the type originally proposed by Hylleraas and Undheim. It is found that it is possible 
to obtain highly accurate values for the magnetic susceptibility using this wave function if the parameters are 
accurately determined. Finally, an argument is given which suggests that the magnetic susceptibility ob­
tained in the present work is accurate to at least five significant figures. 


